时间:2019年4月12日(周五)下午2:00
地点:理科楼A213
报告一:
Marek Wlodzimierz Lassak,波兰科技大学(University of Science and Technology)教授,斯特凡•巴拿赫奖(Stefan Banach Prize)获得者。主要是在欧几里德空间和无限维巴拿赫空间中研究,多面体逼近凸体的理论、凸体的填充和覆盖问题、约化凸体和常宽凸体等。
题目:Spherical geometry and its application to Wulff shape
摘要: The talk concerns spherical geometry. The basic
notions are hemisphere, lune, convex body, the width of a convex body determined by a hemisphere supporting it, the thickness and diameter of a convex body. We also consider reduced spherical bodies, bodies of constant width and bodies of constant diameter. We discuss some relationships between these notions. Finally, an application of some properties of spherical convex bodies for recognizing if a Wulff shape in Euclidean space is self-dual.
报告二:
Takashi Nishimura,日本横滨国立大学(Yokohama National University)教授。研究涉及到凸几何学,奇点理论等。特别的, Wulff图形与对偶Wulff图形以及convex integrand的构造性,分歧理论,距离平方函数的研究等。
题目:Jacobian-squared function germs
In this talk, I will show that, for any equidimensional C^{infty} map-germ f: (R^n,0)→(R^n,0), the map-germ F: (R^n,0)→R^n×R^l defined by F(x)=( f(x), mu_1(x)|Jf|^2(x),…, mu_l(x)|Jf|^2(x) ) is always a frontal; where mu is a C^{infty} function-germ and |Jf| is the Jacobian-determinant of f. Moreover, it is also shown that when the multiplicity of f is less than or equal to 3, any frontal constructed from f must be A-equivalent to a frontal F of the above form.
理学院
2019年4月9日